实时发布最新的行业新闻,让您及时了解行业的风向
新闻中心
工作时间
周一至周六
电话:0731-89718790
传真:0731-89719230
联系我们
新闻中心|News

危险化工工艺及安全控制详解--裂解(裂化)工艺

浏览: 作者: 来源: 时间:2019-04-18 分类:
裂解炉进料压力、流量控制报警与联锁;紧急裂解炉温度报警和联锁;紧急冷却系统;紧急切断系统;反应压力与压缩机转速及入口放火炬控制;再生压力的分程控制;滑阀差压与料位;温度的超驰控制;再生温度与外取热器负荷控制;外取热器汽包和锅炉汽包液位的三冲量控制;锅炉的熄火保护;机组相关控制;可燃与有毒气体检测报警装置等。

反应类型--高温吸热反应 重点监控单元--裂解炉、制冷系统、压缩机、引风机、分离单元

 工艺简介

    裂解是指石油系的烃类原料在高温条件下,发生碳链断裂或脱氢反应,生成烯烃及其他产物的过程。产品以乙烯、丙烯为主,同时副产丁烯、丁二烯等烯烃和裂解汽油、柴油、燃料油等产品。

    烃类原料在裂解炉内进行高温裂解,产出组成为氢气、低/高碳烃类、芳烃类以及馏分为288℃以上的裂解燃料油的裂解气混合物。经过急冷、压缩、激冷、分馏以及干燥和加氢等方法,分离出目标产品和副产品。

    在裂解过程中,同时伴随缩合、环化和脱氢等反应。由于所发生的反应很复杂,通常把反应分成两个阶段。第一阶段,原料变成的目的产物为乙烯、丙烯,这种反应称为一次反应。第二阶段,一次反应生成的乙烯、丙烯继续反应转化为炔烃、二烯烃、芳烃、环烷烃,甚至最终转化为氢气和焦炭,这种反应称为二次反应。裂解产物往往是多种组分混合物。影响裂解的基本因素主要为温度和反应的持续时间。化工生产中用热裂解的方法生产小分子烯烃、炔烃和芳香烃,如乙烯、丙烯、丁二烯、乙炔、苯和甲苯等。

 工艺危险特点

1)在高温(高压)下进行反应,装置内的物料温度一般超过其自燃点,若漏出会立即引起火灾;

2)炉管内壁结焦会使流体阻力增加,影响传热,当焦层达到一定厚度时,因炉管壁温度过高,而不能继续运行下去,必须进行清焦,否则会烧穿炉管,裂解气外泄,引起裂解炉爆炸;

3)如果由于断电或引风机机械故障而使引风机突然停转,则炉膛内很快变成正压,会从窥视孔或烧嘴等处向外喷火,严重时会引起炉膛爆炸;

4)如果燃料系统大幅度波动,燃料气压力过低,则可能造成裂解炉烧嘴回火,使烧嘴烧坏,甚至会引起爆炸;

5)有些裂解工艺产生的单体会自聚或爆炸,需要向生产的单体中加阻聚剂或稀释剂等。

 典型工艺

热裂解制烯烃工艺;

重油催化裂化制汽油、柴油、丙烯、丁烯;

乙苯裂解制苯乙烯;

二氟一氯甲烷(HCFC-22)热裂解制得四氟乙烯(TFE);

二氟一氯乙烷(HCFC-142b)热裂解制得偏氟乙烯(VDF);

四氟乙烯和八氟环丁烷热裂解制得六氟乙烯(HFP)等。

 重点监控工艺参数

    裂解炉进料流量;裂解炉温度;引风机电流;燃料油进料流量;稀释蒸汽比及压力;燃料油压力;滑阀差压超驰控制、主风流量控制、外取热器控制、机组控制、锅炉控制等。

 安全控制的基本要求

   裂解炉进料压力、流量控制报警与联锁;紧急裂解炉温度报警和联锁;紧急冷却系统;紧急切断系统;反应压力与压缩机转速及入口放火炬控制;再生压力的分程控制;滑阀差压与料位;温度的超驰控制;再生温度与外取热器负荷控制;外取热器汽包和锅炉汽包液位的三冲量控制;锅炉的熄火保护;机组相关控制;可燃与有毒气体检测报警装置等。

 宜采用的控制方式

   将引风机电流与裂解炉进料阀、燃料油进料阀、稀释蒸汽阀之间形成联锁关系,一旦引风机故障停车,则裂解炉自动停止进料并切断燃料供应,但应继续供应稀释蒸汽,以带走炉膛内的余热。

将燃料油压力与燃料油进料阀、裂解炉进料阀之间形成联锁关系,燃料油压力降低,则切断燃料油进料阀,同时切断裂解炉进料阀。

分离塔应安装安全阀和放空管,低压系统与高压系统之间应有逆止阀并配备固定的氮气装置、蒸汽灭火装置。

将裂解炉电流与锅炉给水流量、稀释蒸汽流量之间形成联锁关系;一旦水、电、蒸汽等公用工程出现故障,裂解炉能自动紧急停车。

   反应压力正常情况下由压缩机转速控制,开工及非正常工况下由压缩机入口放火炬控制。

再生压力由烟机入口蝶阀和旁路滑阀(或蝶阀)分程控制。

再生、待生滑阀正常情况下分别由反应温度信号和反应器料位信号控制,一旦滑阀差压出现低限,则转由滑阀差压控制。再生温度由外取热器催化剂循环量或流化介质流量控制。

外取热汽包和锅炉汽包液位采用液位、补水量和蒸发量三冲量控制。带明火的锅炉设置熄火保护控制。

大型机组设置相关的轴温、轴震动、轴位移、油压、油温、防喘振等系统控制。

在装置存在可燃气体、有毒气体泄漏的部位设置可燃气体报警仪和有毒气体报警仪。